Autor: |
Eleftherios Halevas, Chrysoula Kokotidou, Elda Zaimai, Alexandra Moschona, Efstratios Lialiaris, Anna Mitraki, Theodore Lialiaris, Anastasia Pantazaki |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Pharmaceutics, Vol 13, Iss 1, p 109 (2021) |
Druh dokumentu: |
article |
ISSN: |
1999-4923 |
DOI: |
10.3390/pharmaceutics13010109 |
Popis: |
In this work, novel chrysin-loaded poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers were synthesized according to a modified oil-in-water single emulsion/solvent evaporation method, utilizing poly(vinyl alcohol) surfactant as stabilizer and dispersing agent for the emulsification, and were evaluated for their physico-chemical and morphological properties, loading capacity and entrapment efficiency and in vitro release of their load. The findings suggest that the novel micro-formulations possess a spherical and relatively wrinkled structure with sizes ranging between 2.4 and 24.7 µm and a highly negative surface charge with z-potential values between (−18.1)–(−14.1) mV. The entrapment efficiency of chrysin in the poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers was estimated to be 58.10% and 43.63%, whereas the loading capacity was found to be 3.79% and 15.85%, respectively. The average release percentage of chrysin was estimated to be 23.10% and 18.01%, respectively. The novel micromaterials were further biologically evaluated for their hemolytic activity through hemocompatibility studies over a range of hematological parameters and cytoxicity against the epithelial human breast cancer cell line MDA-MB 231. The poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers reached an IC50 value with an encapsulated chrysin content of 149.19 µM and 312.18 µM, respectively, and showed sufficient blood compatibility displaying significantly low (up to 2%) hemolytic percentages at concentrations between 5 and 500 µg·mL−1. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|