Autor: |
Ruyue Hu, Chi Han, Yifan Wu, Xiaohui Ai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 7, Pp 18910-18928 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.2024920?viewType=HTML |
Popis: |
This paper studies a stochastic Leslie-Gower model with a Holling-II functional response that is driven by the Ornstein-Uhlenbeck process. Some asymptotic properties of the solution of the stochastic Leslie-Gower model are introduced: The existence and uniqueness of the global solution of the model are given; the ultimate boundedness of the model is proven; by constructing the Lyapunov function and applying Ito's formula, the existence of the stationary distribution of the model is demonstrated; and the conditions for system extinction are discussed. Finally, numerical simulations are used to validate our conclusion. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|