Explainable and Interpretable Model for the Early Detection of Brain Stroke Using Optimized Boosting Algorithms
Autor: | Yogita Dubey, Yashraj Tarte, Nikhil Talatule, Khushal Damahe, Prachi Palsodkar, Punit Fulzele |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Diagnostics, Vol 14, Iss 22, p 2514 (2024) |
Druh dokumentu: | article |
ISSN: | 2075-4418 17135443 |
DOI: | 10.3390/diagnostics14222514 |
Popis: | Background/Objectives: Stroke stands as a prominent global health issue, causing con-siderable mortality and debilitation. It arises when cerebral blood flow is compromised, leading to irreversible brain cell damage or death. Leveraging the power of machine learning, this paper presents a systematic approach to predict stroke patient survival based on a comprehensive set of factors. These factors include demographic attributes, medical history, lifestyle elements, and physiological metrics. Method: An effective random sampling method is proposed to handle the highly biased data of stroke. The stroke pre-diction using optimized boosting machine learning algorithms is supported with explainable AI using LIME and SHAP. This enables the models to discern intricate data patterns and establish correlations between selected features and patient survival. Results: The performance of three boosting algorithms is studied for stroke prediction, which include Gradient Boosting (GB), AdaBoost (ADB), and XGBoost (XGB) with XGB achieved the best outcome overall with a training accuracy of 96.97% and testing accuracy of 92.13%. Conclusions: Through this approach, the study seeks to uncover actionable insights to guide healthcare practitioners in devising personalized treatment strategies for stroke patients. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |