Popis: |
Abstract Background TMPRSS2, a key molecule for SARS-CoV-2 invading human host cells, has an association with cancer. However, its association with lung cancer remains insufficiently unexplored. Methods In five bulk transcriptomics datasets, one single‐cell RNA sequencing (scRNA-seq) dataset and one proteomics dataset for lung adenocarcinoma (LUAD), we explored associations between TMPRSS2 expression and immune signatures, tumor progression phenotypes, genomic features, and clinical prognosis in LUAD by the bioinformatics approach. Furthermore, we performed experimental validation of the bioinformatics findings. Results TMPRSS2 expression levels correlated negatively with the enrichment levels of both immune-stimulatory and immune-inhibitory signatures, while they correlated positively with the ratios of immune-stimulatory/immune-inhibitory signatures. It indicated that TMPRSS2 levels had a stronger negative correlation with immune-inhibitory than with immune-stimulatory signatures. TMPRSS2 downregulation correlated with increased proliferation, stemness, genomic instability, tumor progression, and worse survival in LUAD. We further validated that TMPRSS2 was downregulated with tumor progression in the LUAD cohort we collected from Jiangsu Cancer Hospital, China. In vitro and in vivo experiments verified the association of TMPRSS2 deficiency with increased tumor cell proliferation and invasion and antitumor immunity in LUAD. Moreover, in vivo experiments demonstrated that TMPRSS2-knockdown tumors were more sensitive to BMS-1, an inhibitor of PD-1/PD-L1. Conclusions TMPRSS2 is a tumor suppressor, while its downregulation is a positive biomarker of immunotherapy in LUAD. Our data provide a potential link between lung cancer and pneumonia caused by SARS-CoV-2 infection. |