Autor: |
Ahmed Aberqi, Omar Benslimane, Abdesslam Ouaziz, Dus̆an D. Repovs̆ |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-20 (2022) |
Druh dokumentu: |
article |
ISSN: |
1687-2770 |
DOI: |
10.1186/s13661-022-01590-5 |
Popis: |
Abstract We present the theory of a new fractional Sobolev space in complete manifolds with variable exponent. As a result, we investigate some of our new space’s qualitative properties, such as completeness, reflexivity, separability, and density. We also show that continuous and compact embedding results are valid. We apply the conclusions of this study to the variational analysis of a class of fractional p ( z , ⋅ ) $p(z, \cdot )$ -Laplacian problems involving potentials with vanishing behavior at infinity as an application. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|