Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides

Autor: Jason Allen, Jean-Philippe Pellois
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Scientific Reports, Vol 12, Iss 1, Pp 1-12 (2022)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-022-20425-y
Popis: Abstract To deliver useful biological payloads into the cytosolic space of cells, cell-penetrating peptides have to cross biological membranes. The molecular features that control or enhance this activity remain unclear. Herein, a dimeric template of the arginine-rich HIV TAT CPP was used to establish the effect of incorporating groups and residues of various chemical structures and properties. A positive correlation is established between the relative hydrophobicity of these additional moieties and the ability of the CPP conjugates to deliver a peptidic probe into live cells. CPP conjugates with low hydrophobicity lead to no detectable delivery activity, while CPPs containing groups of increasing hydrophobicity achieve intracellular delivery at low micromolar concentrations. Notably, the chemical structures of the hydrophobic groups do not appear to play a role in overall cell penetration activity. The cell penetration activity detected is consistent with endosomal escape. Leakage assays with lipid bilayer of endosomal membrane composition also establish a positive correlation between hydrophobicity and membrane permeation. Overall, these results indicate that the presence of a relatively hydrophobic moiety, regardless of structure, is required in a CPP structure to enhance its cell penetration. It also indicates that simple modifications, including fluorophores used for cell imaging or small payloads, modulate the activity of CPPs and that a given CPP-conjugate may be unique in its membrane permeation properties.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje