Autor: |
Deep Singh, Bibhuti Bhusan Mohanta, Amit Paul, Jatinder Kumar, Rajwinder Singh |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
International Journal of Mathematical, Engineering and Management Sciences, Vol 9, Iss 6, Pp 1382-1393 (2024) |
Druh dokumentu: |
article |
ISSN: |
2455-7749 |
DOI: |
10.33889/IJMEMS.2024.9.6.074 |
Popis: |
Negabent functions play a vital role in the field of cryptography and coding theory for designing secure cryptosystems. In this article, we investigate the various properties of 2q-nega-Hadamard transform (2q-NHT) of the functions from Z_q^n to Z_2q with q≥2 is a positive integer. We discuss the 2q-NHT of the derivative of these functions and develop a connection between 2q-walsh-Hadamard transform (2q-WHT) and 2q-NHT for the derivative of these functions. Also, we show that the dual g ̃ of g∈B_(n,q) is 2q-bent if N_g (ϑ)=ω^(g ̃(ϑ)) for all ϑ∈Z_q^n. The 2q-nega convolution transform theorem for the current setup is obtained. Further, we have obtained the 2q-NHT of composition of generalized vectorial function and generalized function. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|