Abelian theorems for the stieltjes transform of functions, II
Autor: | Richard D. Carmichael, Elmer K. Hayashi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1981 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 4, Iss 1, Pp 67-88 (1981) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 01611712 |
DOI: | 10.1155/S0161171281000045 |
Popis: | An initial (final) value Abelian theorem concerning transforms of functions is a result in which known behavior of the function as its domain variable approaches zero (approaches ∞) is used to infer the behavior of the transform as its domain variable approaches zero (approaches ∞). We obtain such theorems in this paper concerning the Stieltjes transform. In our results all parameters are complex; the variable s of the transform is complex in the right half plane; and the initial (final) value Abelian theorems are obtained as |s|→0(|s|→∞) within an arbitrary wedge in the right half plane. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |