Do agricultural grasses bred for improved root systems provide resilience to machinery‐derived soil compaction?

Autor: Nuwan P.K. Muhandiram, Mike W. Humphreys, Rhun Fychan, John W. Davies, Ruth Sanderson, Christina L. Marley
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Food and Energy Security, Vol 9, Iss 3, Pp n/a-n/a (2020)
Druh dokumentu: article
ISSN: 2048-3694
DOI: 10.1002/fes3.227
Popis: Abstract The increasing frequency of droughts and floods on grasslands, due to climate change, increases the risk of soil compaction. Soil compaction affects both soil and forage productivity. Differing grasses may counteract some effects of compaction due to differences in their root architecture and ontogeny. To compare their resilience to soil compaction, three Festulolium (ryegrass and fescue species’ hybrids) forage grass cultivars comprising differing root architecture and ontogeny were compared in replicated field plots, together with a ryegrass and tall fescue variety as controls. Pre‐compaction soil and forage properties were determined in spring using > four‐year‐old plots to generate baseline data. Half of each field plot was then artificially compacted using farm machinery. Forage dry matter yield (DMY) was determined over four cuts. After the final harvest, post compaction soil characteristics and root biomass (RB) were compared between grasses in the non‐compacted and compacted soils. Pre‐compaction data showed that soil under Festulolium and ryegrass had similar water infiltration rates, higher than soil under tall fescue plots. Tiller density of the Festulolium at this time was significantly higher than fescue but not the ryegrass control. Forage DMY was significantly lower (p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje