Novel Fractional Models Compatible with Real World Problems

Autor: Ramazan Ozarslan, Ahu Ercan, Erdal Bas
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Fractal and Fractional, Vol 3, Iss 2, p 15 (2019)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract3020015
Popis: In this paper, some real world modeling problems: vertical motion of a falling body problem in a resistant medium, and the Malthusian growth equation, are considered by the newly defined Liouville–Caputo fractional conformable derivative and the modified form of this new definition. We utilize the σ auxiliary parameter for preserving the dimension of physical quantities for newly defined fractional conformable vertical motion of a falling body problem in a resistant medium. The analytical solutions are obtained by iterating this new fractional integral and results are illustrated under different orders by comparison with the Liouville–Caputo fractional operator.
Databáze: Directory of Open Access Journals