Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits
Autor: | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Andrey V. Chukalin, Theodore E. Simos, Charalampos Tsitouras |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mathematics, Vol 9, Iss 23, p 3071 (2021) |
Druh dokumentu: | article |
ISSN: | 2227-7390 91859611 |
DOI: | 10.3390/math9233071 |
Popis: | The family of Numerov-type methods that effectively uses seven stages per step is considered. All the coefficients of the methods belonging to this family can be expressed analytically with respect to four free parameters. These coefficients are trained through a differential evolution technique in order to perform best in a wide range of Keplerian-type orbits. Then it is observed with extended numerical tests that a certain method behaves extremely well in a variety of orbits (e.g., Kepler, perturbed Kepler, Arenstorf, Pleiades) for various steplengths used by the methods and for various intervals of integration. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |