Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits

Autor: Vladislav N. Kovalnogov, Ruslan V. Fedorov, Andrey V. Chukalin, Theodore E. Simos, Charalampos Tsitouras
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematics, Vol 9, Iss 23, p 3071 (2021)
Druh dokumentu: article
ISSN: 2227-7390
91859611
DOI: 10.3390/math9233071
Popis: The family of Numerov-type methods that effectively uses seven stages per step is considered. All the coefficients of the methods belonging to this family can be expressed analytically with respect to four free parameters. These coefficients are trained through a differential evolution technique in order to perform best in a wide range of Keplerian-type orbits. Then it is observed with extended numerical tests that a certain method behaves extremely well in a variety of orbits (e.g., Kepler, perturbed Kepler, Arenstorf, Pleiades) for various steplengths used by the methods and for various intervals of integration.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje