Investigation of Dual-Flow Deep Learning Models LSTM-FCN and GRU-FCN Efficiency against Single-Flow CNN Models for the Host-Based Intrusion and Malware Detection Task on Univariate Times Series Data
Autor: | Dainius Čeponis, Nikolaj Goranin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Applied Sciences, Vol 10, Iss 7, p 2373 (2020) |
Druh dokumentu: | article |
ISSN: | 10072373 2076-3417 |
DOI: | 10.3390/app10072373 |
Popis: | Intrusion and malware detection tasks on a host level are a critical part of the overall information security infrastructure of a modern enterprise. While classical host-based intrusion detection systems (HIDS) and antivirus (AV) approaches are based on change monitoring of critical files and malware signatures, respectively, some recent research, utilizing relatively vanilla deep learning (DL) methods, has demonstrated promising anomaly-based detection results that already have practical applicability due low false positive rate (FPR). More complex DL methods typically provide better results in natural language processing and image recognition tasks. In this paper, we analyze applicability of more complex dual-flow DL methods, such as long short-term memory fully convolutional network (LSTM-FCN), gated recurrent unit (GRU)-FCN, and several others, for the task specified on the attack-caused Windows OS system calls traces dataset (AWSCTD) and compare it with vanilla single-flow convolutional neural network (CNN) models. The results obtained do not demonstrate any advantages of dual-flow models while processing univariate times series data and introducing unnecessary level of complexity, increasing training, and anomaly detection time, which is crucial in the intrusion containment process. On the other hand, the newly tested AWSCTD-CNN-static (S) single-flow model demonstrated three times better training and testing times, preserving the high detection accuracy. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |