Recurrent planetesimal formation in an outer part of the early solar system

Autor: Wladimir Neumann, Ning Ma, Audrey Bouvier, Mario Trieloff
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-63768-4
Popis: Abstract The formation of planets in our solar system encompassed various stages of accretion of planetesimals that formed in the protoplanetary disk within the first few million years at different distances to the sun. Their chemical diversity is reflected by compositionally variable meteorite groups from different parent bodies. There is general consensus that their formation location is roughly constrained by a dichotomy of nucleosynthetic isotope anomalies, relating carbonaceous (C) meteorite parent bodies to the outer protoplanetary disk and the non-carbonaceous (NC) parent bodies to an origin closer to the sun. It is a common idea, that in these inner parts of the protoplanetary disks, planetesimal accretion processes were faster. Testing such scenarios requires constraining formation ages of meteorite parent bodies. Although isotopic age dating can yield precise formation ages of individual mineral constituents of meteorites, such ages frequently represent mineral cooling ages that can postdate planetesimal formation by millions or tens of millions of years, depending on the cooling history of individual planetesimals at different depths. Nevertheless, such cooling ages provide a detailed thermal history which can be fitted by thermal evolution models that constrain the formation age of individual parent bodies. Here we apply state-of-the-art thermal evolution models to constrain planetesimal formation times particular in the outer solar system formation region of C meteorites. We infer a temporally distributed accretion of various parent bodies from $$2-3$$ > 2 - 3 Ma) accretion of C planetesimals beyond the snow line which escaped severe planetesimal heating and volatile loss, hence, preserving their volatiles, especially water. Only this delayed formation of water-rich planetesimals allowed Earth to accrete sufficient water to become a habitable planet, preventing it from being a bone dry planet.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje