Determination of a Nonlinear Coefficient in a Time-Fractional Diffusion Equation

Autor: Mustafa Zeki, Ramazan Tinaztepe, Salih Tatar, Suleyman Ulusoy, Rami Al-Hajj
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Fractal and Fractional, Vol 7, Iss 5, p 371 (2023)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract7050371
Popis: In this paper, we study direct and inverse problems for a nonlinear time fractional diffusion equation. We prove that the direct problem has a unique weak solution and the solution depends continuously on the coefficient. Then we show that the inverse problem has a quasi-solution. The direct problem is solved by the method of lines using an operator approach. A quasi-Newton optimization method is used for the numerical solution to the inverse problem. The Tikhonov regularization is used to overcome the ill-posedness of the inverse problem. Numerical examples with noise-free and noisy data illustrate the applicability and accuracy of the proposed method to some extent.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje