Effects of composition and pH on the degradation of hyaluronate and carboxymethyl cellulose gels and release of nanocrystalline silver
Autor: | Colleen Nancy Ward, Payton E. LeBlanc, Robert Edward Burrell |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Journal of Applied Biomaterials & Functional Materials, Vol 22 (2024) |
Druh dokumentu: | article |
ISSN: | 2280-8000 22808000 |
DOI: | 10.1177/22808000241257124 |
Popis: | Adhesions are fibrous tissue connections which are a common complication of surgical procedures and may be prevented by protecting tissue surfaces and reducing inflammation. The combination of biodegradable polymers and nanocrystalline silver can be used to create an anti-inflammatory gel to be applied during surgery. In this study, sodium hyaluronate and sodium carboxymethyl cellulose were added in concentrations from 0.25% to 1% w/v to aqueous nanocrystalline silver solutions to create viscous gels. Gels were loaded into dialysis cassettes and placed in PBS for 3 days. pH was adjusted using potassium phosphate monobasic and sodium hydroxide. Release of silver into the PBS was measured at several time points. Polymer degradation was compared by measuring the viscosity of the gels before and after the experiment. Gels lost up to 84% of initial viscosity over 3 days and released between 24% and 41% of the added silver. Gels with higher initial viscosity did not have a greater degree of degradation, as measured by percent viscosity reduction, but still resulted in a higher final viscosity. Silver release was not significantly impacted by pH or composition, but still varied between experimental groups. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |