A Classical Interpretation of the Scrooge Distribution
Autor: | William K. Wootters |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Entropy, Vol 20, Iss 8, p 619 (2018) |
Druh dokumentu: | article |
ISSN: | 1099-4300 04714474 |
DOI: | 10.3390/e20080619 |
Popis: | The Scrooge distribution is a probability distribution over the set of pure states of a quantum system. Specifically, it is the distribution that, upon measurement, gives up the least information about the identity of the pure state compared with all other distributions that have the same density matrix. The Scrooge distribution has normally been regarded as a purely quantum mechanical concept with no natural classical interpretation. In this paper, we offer a classical interpretation of the Scrooge distribution viewed as a probability distribution over the probability simplex. We begin by considering a real-amplitude version of the Scrooge distribution for which we find that there is a non-trivial but natural classical interpretation. The transition to the complex-amplitude case requires a step that is not particularly natural but that may shed light on the relation between quantum mechanics and classical probability theory. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |