Analytical description of photon beam phase spaces in inverse Compton scattering sources

Autor: C. Curatolo, I. Drebot, V. Petrillo, L. Serafini
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Physical Review Accelerators and Beams, Vol 20, Iss 8, p 080701 (2017)
Druh dokumentu: article
ISSN: 2469-9888
DOI: 10.1103/PhysRevAccelBeams.20.080701
Popis: We revisit the description of inverse Compton scattering sources and the photon beams generated therein, emphasizing the behavior of their phase space density distributions and how they depend upon those of the two colliding beams of electrons and photons. The main objective is to provide practical formulas for bandwidth, spectral density, brilliance, which are valid in general for any value of the recoil factor, i.e. both in the Thomson regime of negligible electron recoil, and in the deep Compton recoil dominated region, which is of interest for gamma-gamma colliders and Compton sources for the production of multi-GeV photon beams. We adopt a description based on the center of mass reference system of the electron-photon collision, in order to underline the role of the electron recoil and how it controls the relativistic Doppler/boost effect in various regimes. Using the center of mass reference frame greatly simplifies the treatment, allowing us to derive simple formulas expressed in terms of rms momenta of the two colliding beams (emittance, energy spread, etc.) and the collimation angle in the laboratory system. Comparisons with Monte Carlo simulations of inverse Compton scattering in various scenarios are presented, showing very good agreement with the analytical formulas: in particular we find that the bandwidth dependence on the electron beam emittance, of paramount importance in Thomson regime, as it limits the amount of focusing imparted to the electron beam, becomes much less sensitive in deep Compton regime, allowing a stronger focusing of the electron beam to enhance luminosity without loss of mono-chromaticity. A similar effect occurs concerning the bandwidth dependence on the frequency spread of the incident photons: in deep recoil regime the bandwidth comes out to be much less dependent on the frequency spread. The set of formulas here derived are very helpful in designing inverse Compton sources in diverse regimes, giving a quite accurate first estimate in typical operational conditions for number of photons, bandwidth, spectral density and brilliance values—the typical figures of merit of such radiation sources.
Databáze: Directory of Open Access Journals