Autor: |
K. Mokhtari, M. Kheradmand Saadi, H. Ahmadpanahi, Gh. Jahanfarnia |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Nuclear Engineering and Technology, Vol 53, Iss 9, Pp 3051-3057 (2021) |
Druh dokumentu: |
article |
ISSN: |
1738-5733 |
DOI: |
10.1016/j.net.2021.04.001 |
Popis: |
The concrete is considered as an important radiation shielding material employed widely in nuclear reactors, particle accelerators, laboratory hot cells and other different radiation sources. The present research is dedicated to the shielding properties study of the ordinary concrete reinforced with different weight fractions of lead oxide micro/nano particles. Lead oxide particles were fabricated by chemical synthesis method and their properties including the average size, morphological structure, functional groups and thermal properties were characterized by XRD, FESEM-EDS, FTIR and TGA analysis. The gamma ray mass attenuation coefficient of concrete composites has been calculated and measured by means of the Monte Carlo simulation and experimental methods. The simulation process was based on the use of MCNP Monte Carlo code where the mass attenuation coefficient (μ/ρ) has been calculated as a function of different particle sizes and filler weight fractions. The simulation results showed that the employment of the lead oxide filler particles enhances the mass attenuation coefficient of the ordinary concrete, drastically. On the other hand, there are approximately no differences between micro and nano sized particles. The mass attenuation coefficient was increased by increasing the weight fraction of nanoparticles. However, a semi-saturation effect was observed at concentrations more than 10 wt%. The experimental process was based on the fabrication of concrete slabs filled by different weight fractions of nano lead oxide particles. The mass attenuation coefficients of these slabs were determined at different gamma ray energies using 22Na, 137Cs and 60Co sources and NaI (Tl) scintillation detector. The experimental results showed that the HVL parameter of the ordinary concrete reinforced with 5 wt% of nano PbO particles was reduced by 64% at 511 keV and 48% at 1332 keV. Reasonable agreement was obtained between simulation and experimental results and showed that the employment of nano PbO particles is more efficient at low gamma energies up to 1Mev. The proposed concrete is less toxic and could be prepared in block form instead of toxic lead blocks. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|