Maximum Likelihood Joint Tracking and Association in Strong Clutter

Autor: Leonid I. Perlovsky, Ross W. Deming
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: International Journal of Advanced Robotic Systems, Vol 10 (2013)
Druh dokumentu: article
ISSN: 1729-8814
DOI: 10.5772/52859
Popis: We have developed a maximum likelihood formulation for a joint detection, tracking and association problem. An efficient non-combinatorial algorithm for this problem is developed in case of strong clutter for radar data. By using an iterative procedure of the dynamic logic process “from vague-to-crisp” explained in the paper, the new tracker overcomes the combinatorial complexity of tracking in highly-cluttered scenarios and results in an orders-of-magnitude improvement in signal-to-clutter ratio.
Databáze: Directory of Open Access Journals