Bio-inspired circular latent spaces to estimate objects' rotations

Autor: Alice Plebe, Mauro Da Lio
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Frontiers in Computational Neuroscience, Vol 17 (2023)
Druh dokumentu: article
ISSN: 1662-5188
DOI: 10.3389/fncom.2023.1268116
Popis: This paper proposes a neural network model that estimates the rotation angle of unknown objects from RGB images using an approach inspired by biological neural circuits. The proposed model embeds the understanding of rotational transformations into its architecture, in a way inspired by how rotation is represented in the ellipsoid body of Drosophila. To effectively capture the cyclic nature of rotation, the network's latent space is structured in a circular manner. The rotation operator acts as a shift in the circular latent space's units, establishing a direct correspondence between shifts in the latent space and angular rotations of the object in the world space. Our model accurately estimates the difference in rotation between two views of an object, even for categories of objects that it has never seen before. In addition, our model outperforms three state-of-the-art convolutional networks commonly used as the backbone for vision-based models in robotics.
Databáze: Directory of Open Access Journals