Draft crystal structure of the vault shell at 9-A resolution.

Autor: Daniel H Anderson, Valerie A Kickhoefer, Stuart A Sievers, Leonard H Rome, David Eisenberg
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Zdroj: PLoS Biology, Vol 5, Iss 11, p e318 (2007)
Druh dokumentu: article
ISSN: 1544-9173
1545-7885
DOI: 10.1371/journal.pbio.0050318
Popis: Vaults are the largest known cytoplasmic ribonucleoprotein structures and may function in innate immunity. The vault shell self-assembles from 96 copies of major vault protein and encapsulates two other proteins and a small RNA. We crystallized rat liver vaults and several recombinant vaults, all among the largest non-icosahedral particles to have been crystallized. The best crystals thus far were formed from empty vaults built from a cysteine-tag construct of major vault protein (termed cpMVP vaults), diffracting to about 9-A resolution. The asymmetric unit contains a half vault of molecular mass 4.65 MDa. X-ray phasing was initiated by molecular replacement, using density from cryo-electron microscopy (cryo-EM). Phases were improved by density modification, including concentric 24- and 48-fold rotational symmetry averaging. From this, the continuous cryo-EM electron density separated into domain-like blocks. A draft atomic model of cpMVP was fit to this improved density from 15 domain models. Three domains were adapted from a nuclear magnetic resonance substructure. Nine domain models originated in ab initio tertiary structure prediction. Three C-terminal domains were built by fitting poly-alanine to the electron density. Locations of loops in this model provide sites to test vault functions and to exploit vaults as nanocapsules.
Databáze: Directory of Open Access Journals