Room-temperature synthesis of excellent-performance CsPb1-xSnxBr3 perovskite quantum dots and application in light emitting diodes

Autor: Jidong Deng, Haoran Wang, Jiao Xun, Jingxi Wang, Xuyong Yang, Wei Shen, Ming Li, Rongxing He
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Materials & Design, Vol 185, Iss , Pp - (2020)
Druh dokumentu: article
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2019.108246
Popis: The traditional hot injection (HI) process needs high temperature, inert gas protection, and localized injection operation, which severely hinder their large-scale industrialization. Moreover, the CsPb1-xSnxBr3 HI-QDs exhibit poor stability. Herein, we report the room-temperature (RT) synthesis of CsPb1-xSnxBr3 perovskite QDs by modified ligand-assisted reprecipitation (LARP) approach. Compared with the CsPb1-xSnxBr3 HI-QDs reported in literatures, the CsPb1-xSnxBr3 RT-QDs show higher photoluminescence quantum yield (PLQY) and better stability: the CsPb0.9Sn0.1Br3 RT-QDs obtain the highest PLQY of more than 91%, and the stability of the film made with this QDs still maintain more than 80% of its original fluorescence strength after 120 days in air environment. Because of the superior PLQY, light-emitting diodes (LEDs) based on the RT-QDs is constructed, and it exhibits an external quantum efficiency (EQE) of 1.8%, a luminance of 1600 cdm-2, a current efficiency of 4.89 cdA-1, a power efficiency of 6.41 lmw−1, and a low on-voltage of 3.6 V. The present work provides a feasible method for large-scale industrial synthesis of perovskite QDs at room temperature and shows that the CsPb1-xSnxBr3 RT-QDs are promising for highly efficient LEDs. Keywords: Room-temperature synthesis, CsPb1-xSnxBr3 perovskite quantum dots, High quantum yield, Outstanding stability, Light-emitting diodes
Databáze: Directory of Open Access Journals