Autor: |
P.-J. Wyndaele, J.-F. de Marneffe, S. Sergeant, C. J. L. de la Rosa, S. Brems, A. M. Caro, S. De Gendt |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
npj 2D Materials and Applications, Vol 8, Iss 1, Pp 1-11 (2024) |
Druh dokumentu: |
article |
ISSN: |
2397-7132 |
DOI: |
10.1038/s41699-024-00464-x |
Popis: |
Abstract The full utilization of two-dimensional transition metal dichalcogenides (2D TMDCs) faces several challenges, among which is realizing uniform material deposition on the 2D surface. Typical strategies to enable material growth lead to a poor interface quality, degrading the 2D TMDC’s properties. In this work, a sacrificial, graphene oxide-based seeding layer is used (1) as passivation layer, protecting the underlying 2D TMDC and (2) as nucleation layer, enabling uniform material growth. Graphene is transferred on monolayer WS2, establishing a high-quality van der Waals interface. After transfer, the polymeric residues on graphene are cleaned via a combination of wet- and dry treatments and functionalized via dry UV/O3 oxidation. The rate of graphene oxidation is shown to be substrate dependent, which is explained by UV light-induced ultrafast charge transfer between the graphene and WS2 monolayer. The carbon-oxygen functionalities serve as nucleation sites in a subsequent HfO2 ALD process, achieving more uniform dielectric growth and faster layer closure compared to direct deposition. The graphene-based nucleation- / passivation approach offers adaptability, allowing for tailored surface chemistry to enable any alternative material growth, while maintaining a prefect van der Waals interface. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|