Autor: |
Vali Torkashvand |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics and Computational Sciences, Vol 5, Iss 3, Pp 80-92 (2024) |
Druh dokumentu: |
article |
ISSN: |
2717-2708 |
DOI: |
10.30511/mcs.2024.2032502.1187 |
Popis: |
In this work,a fourth-order without-memory method is proposed that has a self-accelerator parameter.This method doesn’t need to compute a derivative function forsolving nonlinear equations.We have approximated the self-accelerator parameter andhave increased the convergence order to %50 without increase function evaluation.Theefficiency index of the with-memory method sixth-order is equal to 1.81712. Which ishigher than one-, two-, three-, and four-step optimal methods.The attraction basin ofthe proposed methods is compared by the famous Newton’s method and Kung-Traub’smethod. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|