Autor: |
Florian Raab, Wilhelm Malloni, Simon Wein, Mark W. Greenlee, Elmar W. Lang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-12 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-48578-4 |
Popis: |
Abstract In this study, an automated 2D machine learning approach for fast and precise segmentation of MS lesions from multi-modal magnetic resonance images (mmMRI) is presented. The method is based on an U-Net like convolutional neural network (CNN) for automated 2D slice-based-segmentation of brain MRI volumes. The individual modalities are encoded in separate downsampling branches without weight sharing, to leverage the specific features. Skip connections input feature maps to multi-scale feature fusion (MSFF) blocks at every decoder stage of the network. Those are followed by multi-scale feature upsampling (MSFU) blocks which use the information about lesion shape and location. The CNN is evaluated on two publicly available datasets: The ISBI 2015 longitudinal MS lesion segmentation challenge dataset containing 19 subjects and the MICCAI 2016 MSSEG challenge dataset containing 15 subjects from various scanners. The proposed multi-input 2D architecture is among the top performing approaches in the ISBI challenge, to which open-access papers are available, is able to outperform state-of-the-art 3D approaches without additional post-processing, can be adapted to other scanners quickly, is robust against scanner variability and can be deployed for inference even on a standard laptop without a dedicated GPU. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|