Autor: |
Yi-Jun Tang, Ke Yan, Xingyi Zhang, Ye Tian, Bin Liu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
BMC Biology, Vol 21, Iss 1, Pp 1-14 (2023) |
Druh dokumentu: |
article |
ISSN: |
1741-7007 |
DOI: |
10.1186/s12915-023-01672-5 |
Popis: |
Abstract Background Intrinsically disordered regions (IDRs) are widely distributed in proteins and related to many important biological functions. Accurately identifying IDRs is of great significance for protein structure and function analysis. Because the long disordered regions (LDRs) and short disordered regions (SDRs) share different characteristics, the existing predictors fail to achieve better and more stable performance on datasets with different ratios between LDRs and SDRs. There are two main reasons. First, the existing predictors construct network structures based on their own experiences such as convolutional neural network (CNN) which is used to extract the feature of neighboring residues in protein, and long short-term memory (LSTM) is used to extract the long-distance dependencies feature of protein residues. But these networks cannot capture the hidden feature associated with the length-dependent between residues. Second, many algorithms based on deep learning have been proposed but the complementarity of the existing predictors is not fully explored and used. Results In this study, the neural architecture search (NAS) algorithm was employed to automatically construct the network structures so as to capture the hidden features in protein sequences. In order to stably predict both the LDRs and SDRs, the model constructed by NAS was combined with length-dependent models for capturing the unique features of SDRs or LDRs and general models for capturing the common features between LDRs and SDRs. A new predictor called IDP-Fusion was proposed. Conclusions Experimental results showed that IDP-Fusion can achieve more stable performance than the other existing predictors on independent test sets with different ratios between SDRs and LDRs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|