Automorphism groups of some non-nilpotent Leibniz algebras
Autor: | L.A. Kurdachenko, P.Ye. Minaiev, O.O. Pypka |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Researches in Mathematics, Vol 32, Iss 1, Pp 101-109 (2024) |
Druh dokumentu: | article |
ISSN: | 2664-4991 2664-5009 |
DOI: | 10.15421/242409 |
Popis: | Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[a,[b,c]]=[[a,b],c]+[b,[a,c]]$ for all $a,b,c\in L$. A linear transformation $f$ of $L$ is called an endomorphism of $L$, if $f([a,b])=[f(a),f(b)]$ for all elements $a,b\in L$. A bijective endomorphism of $L$ is called an automorphism of $L$. It is easy to show that the set of all automorphisms of Leibniz algebra is a group with respect to the operation of multiplication of automorphisms. The description of the structure of the automorphism groups of Leibniz algebras is one of the natural and important problems of the general Leibniz algebra theory. The main goal of this article is to describe the structure of the automorphism group of a certain type of non-nilpotent three-dimensional Leibniz algebras. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |