Popis: |
Because of their beautiful appearance, strong crossing ability, and reasonable stress performance, the application of tied steel box arch bridges is becoming more and more extensive. Bridge construction monitoring can control and adjust the deviation state to ensure the stress and linear state of the bridge after completion. This study carried out a symmetrical construction monitoring analysis and completed state evaluation of the newly built Dafeng River Bridge in Guangxi Province based on the finite element method. MIDAS Civil finite element software is used for simulation analysis to calculate the deformation and stress of the tied steel box arch bridge at the construction and completion stages. The tensile and compressive stress of the main arch and transverse brace, as well as the cumulative displacements of the main arch and lattice beam, are symmetrically distributed. The maximum tensile and compressive stresses are 15.1 MPa and 74.6 MPa, respectively, less than the specification’s allowable value. Meanwhile, for the completed bridge under the loading combinations of serviceability limit state and bearing capacity ultimate limit state, the stress of the main arch, transverse brace, and lattice beam meets the specification requirements. The maximum cable forces of the suspender and tie rod under the bearing capacity ultimate limit state are 2189.4 kN and 2991.2 kN, and their corresponding minimum safety factors are 3.2 and 2.7. In addition, the deviations between the on-site monitoring and the finite element theoretical values are within the specification allowable range for the cable force of the suspender and tie rod and the bridge deck alignment. It indicates that the bridge construction monitoring effect is reasonable and ideal, and the symmetrically finite element simulation analysis can provide a theoretical basis for construction monitoring. |