Hyperbolic Ricci solitons on perfect fluid spacetimes

Autor: Shahroud Azami, Mehdi Jafari, Nargis Jamal, Abdul Haseeb
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 7, Pp 18929-18943 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024921?viewType=HTML
Popis: In the present paper, we investigate perfect fluid spacetimes and perfect fluid generalized Roberston-Walker spacetimes that contain a torse-forming vector field satisfying almost hyperbolic Ricci solitons. We show that the perfect fluid spacetimes that contain a torse-forming vector field satisfy an almost hyperbolic Ricci soliton, and we prove that a perfect fluid generalized Roberston-Walker spacetime satisfying an almost hyperbolic Ricci soliton $ (g, \zeta, \varrho, \mu) $ is an Einstein manifold. Also, we study an almost hyperbolic Ricci soliton $ (g, V, \varrho, \mu) $ on these spacetimes when $ V $ is a conformal vector field, a torse-forming vector field, or a Ricci bi-conformal vector field.
Databáze: Directory of Open Access Journals