The Effect of Gravitational Decoupling on Constraining the Mass and Radius for the Secondary Component of GW190814 and Other Self-bound Strange Stars in f(Q) Gravity Theory
Autor: | Sunil Kumar Maurya, Ksh. Newton Singh, Megandhren Govender, Ghulam Mustafa, Saibal Ray |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | The Astrophysical Journal Supplement Series, Vol 269, Iss 2, p 35 (2023) |
Druh dokumentu: | article |
ISSN: | 1538-4365 0067-0049 |
DOI: | 10.3847/1538-4365/ad0154 |
Popis: | Inspired by the conundrum of the gravitational event GW190814, which brings to light the coalescence of a 23 M _⊙ black hole with a yet-to-be-determined secondary component, we look to modeling compact objects within the framework of $f({ \mathcal Q })$ gravity by employing the method of gravitational decoupling. We impose a quadratic equation of state (EOS) for the interior matter distribution, which in the appropriate limit reduces to the MIT bag model. The governing field equations arising from gravitational decoupling bifurcate into the $\rho ={\theta }_{0}^{0}$ and ${p}_{r}={\theta }_{1}^{1}$ sectors, leading to two distinct classes of solutions. Both families of solutions are subjected to rigorous tests, qualifying them to describe a plethora of compact objects, including neutron stars, strange stars, and the possible progenitor of the secondary component of GW190814. Using observational data of mass–radius relations for compact objects LMC X-4, Cen X-3, PSR J1614–2230, and PSR J0740+6620, we show that it is possible to generate stellar masses and radii beyond 2.0 M _⊙ for neutron stars. Our findings reveal that the most suitable and versatile model in this framework is the quadratic EOS, which accounts for a range of low-mass stars and typical stellar candidates describing the secondary component of GW190814. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |