The Cardinal Squaring Principle and an Alternative Axiomatization of NFU
Autor: | Tin Adlešić, Vedran Čačić |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Bulletin of the Section of Logic, Vol 52, Iss 4, Pp 551-581 (2023) |
Druh dokumentu: | article |
ISSN: | 0138-0680 2449-836X |
DOI: | 10.18778/0138-0680.2023.25 |
Popis: | In this paper, we rigorously prove the existence of type-level ordered pairs in Quine’s New Foundations with atoms, augmented by the axiom of infinity and the axiom of choice (NFU + Inf + AC). The proof uses the cardinal squaring principle; more precisely, its instance for the (infinite) universe (VCSP), which is a theorem of NFU + Inf + AC. Therefore, we have a justification for proposing a new axiomatic extension of NFU, in order to obtain type-level ordered pairs almost from the beginning. This axiomatic extension is NFU + Inf + AC + VCSP, which is equivalent to NFU + Inf + AC, but easier to reason about. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |