Weakly quadratent rings
Autor: | Peter V. Danchev |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Journal of Taibah University for Science, Vol 13, Iss 1, Pp 121-123 (2019) |
Druh dokumentu: | article |
ISSN: | 1658-3655 16583655 |
DOI: | 10.1080/16583655.2018.1545559 |
Popis: | We completely characterize up to an isomorphism those rings whose elements satisfy the equations $ x^4=x $ or $ x^4=-x $ . Specifically, it is proved that a ring is weakly quadratent if, and only if, it is isomorphic to either K, $ \mathbb {Z}_3 $ , $ \mathbb {Z}_7 $ , $ K\times \mathbb {Z}_3 $ or $ K\times \mathbb {Z}_7 $ , where K is a ring which is a subring of a direct product of family of copies of the fields $ \mathbb {Z}_2 $ and $ \mathbb {F}_4 $ . This achievement continues our recent joint investigation in J. Algebra (2015) where we have characterized weakly boolean rings satisfying the equations $ x^2=x $ or $ x^2=-x $ as well as a recent own investigation in Kragujevac J. Math. (2019) where we have characterized weakly tripotent rings satisfying the equations $ x^3=x $ or $ x^3=-x $ . |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |