Autor: |
Lorenzo Vangelista, Ivano Calabrese, Alessandro Cattapan |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Sensors, Vol 23, Iss 4, p 1806 (2023) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s23041806 |
Popis: |
LoRaWAN networks rely heavily on the adaptive data rate algorithm to achieve good link reliability and to support the required density of end devices. However, to be effective the adaptive data rate algorithm needs to be tuned according to the level of mobility of each end device. For that purpose, different adaptive data rate algorithms have been developed for the different levels of mobility of end devices, e.g., for static or mobile end devices. In this paper, we describe and evaluate a new and effective method for determining the level of mobility of end devices based on machine learning techniques and specifically on the support vector machine supervised learning method. The proposed method does not rely on the location capability of LoRaWAN networks; instead, it relies only on data always available at the LoRaWAN network server. Moreover, the performance of this method in a real LoRaWAN network is assessed; the results give clear evidence of the effectiveness and reliability of the proposed machine learning approach. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|