Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions
Autor: | S. Lal, S. Kumar, S.K. Mishra, A.K. Awasthi |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 1, Pp 29-48 (2022) |
Druh dokumentu: | article |
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.14.1.29-48 |
Popis: | In this paper, a new computation method derived to solve the problems of approximation theory. This method is based upon pseudo-Chebyshev wavelet approximations. The pseudo-Chebyshev wavelet is being presented for the first time. The pseudo-Chebyshev wavelet is constructed by the pseudo-Chebyshev functions. The method is described and after that the error bounds of a function is analyzed. We have illustrated an example to demonstrate the accuracy and efficiency of the pseudo-Chebyshev wavelet approximation method and the main results. Four new error bounds of the function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet are obtained. These estimators are the new fastest and best possible in theory of wavelet analysis. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |