Autor: |
Nan Jia, Lei Li, Hui Guo, Mingyu Xie |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-54832-8 |
Popis: |
Abstract Iron (Fe) oxides can interact with soil organic carbon (SOC) to form Fe-bound organic carbon (OC-Fe), which strongly promotes SOC protection, mitigating global climate change. However, the global patterns and factors controlling OC-Fe are unclear. Here, we conducted a meta-analysis of 3,395 globally distributed soil profiles to reveal the role of Fe-Al oxides in global soil carbon stabilization and stocks. The global OC-Fe stock in topsoil is 233 PgC, accounting for 33 ± 15% of the total SOC stock. A substantial OC-Fe deficit (difference between OC-Fe and OC-Femax) was observed at the equator and at mid-latitudes. Our findings suggest that mineral factors should be incorporated into soil carbon models to improve model predictions. Although there are uncertainties in current OC-Fe extraction method, the global distribution of OC-Fe and OC-Femax constitutes a vital resource for future research targeting carbon cycling issues and offers innovative strategies for global soil carbon sequestration initiatives. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|