Hybrid no-signaling-quantum correlations

Autor: Michał Banacki, Piotr Mironowicz, Ravishankar Ramanathan, Paweł Horodecki
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: New Journal of Physics, Vol 24, Iss 8, p 083003 (2022)
Druh dokumentu: article
ISSN: 1367-2630
DOI: 10.1088/1367-2630/ac7fb3
Popis: Fundamental investigations in non-locality have shown that while the no-signaling principle alone is not sufficient to single out the set of quantum non-local correlations, local quantum mechanics and no-signaling together exactly reproduce the set of quantum correlations in the two-party Bell scenario. Here, we introduce and study an intermediate hybrid no-signaling quantum set of non-local correlations that we term HNSQ in the multi-party Bell scenario where some subsystems are locally quantum while the remaining subsystems are only constrained by the no-signaling principle. Specifically, the set HNSQ is a super-quantum set of correlations derived from no-signaling assemblages by performing quantum measurements on the trusted subsystems. We show that in contrast to the set NS of no-signaling behaviors, there exist extreme points of HNSQ in the tripartite Bell scenario that admit quantum realization. As a tool for optimization over the set HNSQ , we introduce an outer hierarchy of semi-definite programming approximations to the set following an approach put forward by Doherty–Parrilo–Spedalieri. We perform an extensive numerical analysis of the maximal violation of the facet Bell inequalities in the three-party binary input–output scenario and study the corresponding self-testing properties. In contrast to the usual no-signaling correlations, the new set allows for simple security proofs of (one-sided)-device-independent applications against super-quantum adversaries.
Databáze: Directory of Open Access Journals