Autor: |
Kyoung Ja Moon, Chang-Sik Son, Jong-Ha Lee, Mina Park |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
BMC Medical Informatics and Decision Making, Vol 22, Iss 1, Pp 1-11 (2022) |
Druh dokumentu: |
article |
ISSN: |
1472-6947 |
DOI: |
10.1186/s12911-022-01966-8 |
Popis: |
Abstract Background Long-term care facilities (LCFs) in South Korea have limited knowledge of and capability to care for patients with delirium. They also often lack an electronic medical record system. These barriers hinder systematic approaches to delirium monitoring and intervention. Therefore, this study aims to develop a web-based app for delirium prevention in LCFs and analyse its feasibility and usability. Methods The app was developed based on the validity of the AI prediction model algorithm. A total of 173 participants were selected from LCFs to participate in a study to determine the predictive risk factors for delerium. The app was developed in five phases: (1) the identification of risk factors and preventive intervention strategies from a review of evidence-based literature, (2) the iterative design of the app and components of delirium prevention, (3) the development of a delirium prediction algorithm and cloud platform, (4) a pilot test and validation conducted with 33 patients living in a LCF, and (5) an evaluation of the usability and feasibility of the app, completed by nurses (Main users). Results A web-based app was developed to predict high risk of delirium and apply preventive interventions accordingly. Moreover, its validity, usability, and feasibility were confirmed after app development. By employing machine learning, the app can predict the degree of delirium risk and issue a warning alarm. Therefore, it can be used to support clinical decision-making, help initiate the assessment of delirium, and assist in applying preventive interventions. Conclusions This web-based app is evidence-based and can be easily mobilised to support care for patients with delirium in LCFs. This app can improve the recognition of delirium and predict the degree of delirium risk, thereby helping develop initiatives for delirium prevention and providing interventions. Moreover, this app can be extended to predict various risk factors of LCF and apply preventive interventions. Its use can ultimately improve patient safety and quality of care. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|