Optoelectronical Properties of a Metalloid-Doped B12N12 Nano-Cage
Autor: | elham tazikeh, fatemeh azimi, fariborz kaveh, majid monajemi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Optoelectronical Nanostructures, Vol 5, Iss 1, Pp 101-120 (2020) |
Druh dokumentu: | article |
ISSN: | 2423-7361 2538-2489 |
Popis: | Abstract: The opteoelectronical properties of B12N12 nano-cage was investigated in thepresent of some metals by density functional theory (DFT). After the adsorption of atoxic molecule with all complexes, the electronic properties in B11GeN12 nano-cagewere significantly increased. The UV-Vis adsorption and Infrared spectroscopy ofcyanogen chloride over the B11GeN12 have been performed by the time-dependentdensity functional theory (TD-DFT). The increasing of λmax values from the pristineB12N12 to B11GeN12, reveals that B11GeN12 nano-cages can be a suitable structure asoptic sensor for this gas detection. Overall, Because of the crystalline defect, Symmetrydisruption and the changes in the degree of polarization, the semiconductor propertyaffects these nano-cage systems. Finally, the changes of energy of gap (Eg) with asignificant charge transfer from this gas to Ge-doped nano-cage, which lead to changesof conductance of it and render this kind of system sufficient for gas detection. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |