Autor: |
Bos Debusscher, Lisa Landuyt, Frieke Van Coillie |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 12, Iss 13, p 2118 (2020) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs12132118 |
Popis: |
Insights into flood dynamics, rather than solely flood extent, are critical for effective flood disaster management, in particular in the context of emergency relief and damage assessment. Although flood dynamics provide insight in the spatio-temporal behaviour of a flood event, to date operational visualization tools are scarce or even non-existent. In this letter, we distil a flood dynamics map from a radar satellite image time series (SITS). For this, we have upscaled and refined an existing design that was originally developed on a small area, describing flood dynamics using an object-based approach and a graph-based representation. Two case studies are used to demonstrate the operational value of this method by visualizing flood dynamics which are not visible on regular flood extent maps. Delineated water bodies are grouped into graphs according to their spatial overlap on consecutive timesteps. Differences in area and backscatter are used to quantify the amount of variation, resulting in a global variation map and a temporal profile for each water body, visually describing the evolution of the backscatter and number of polygons that make up the water body. The process of upscaling led us to applying a different water delineation approach, a different way of ensuring the minimal mapping unit and an increased code efficiency. The framework delivers a new way of visualizing floods, which is straightforward and efficient. Produced global variation maps can be applied in a context of data assimilation and disaster impact management. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|