Autor: |
Jong-Seon Shin, Dowon Shun, Churl-Hee Cho, Yujin Choi, Dal-Hee Bae |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Energies, Vol 15, Iss 15, p 5507 (2022) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en15155507 |
Popis: |
A CFBC (Circulating Fluidized Bed Combustor) boiler for combusted SRF (Solid Refused Fuel) is designed for solid waste combustion and power generation. The boiler consumes about 200 tons/day of SRF and generates 60 ton/h of steam or 10 MWe in electricity. The boiler is designed to burn pelletized waste fuel made of municipal solid waste collected from a town with a population of 400,000. Heat and mass balance calculations over the combustor and at each boiler section were performed and compared between the designed and measured data to analyze the boiler’s performance. After-combustion, the most significant phenomenon in low-density waste-derived fuel combustion in a CFBC boiler was monitored. The heat and mass balance were the most appropriate tools to analyze the boiler performance. The flow rate of spray water at the de-superheater was a reliable indicator to quantify the after-combustion. The design modification of the boiler unit for after-combustion control in the existing boiler was based on the quantification of spray water. The load distribution of the de-superheater decreases from 1.76% to 0.87% in 89% MCR before the installation of the evaporator and 82* % MCR load distribution of each boiler part after installation. The result was effective for the control of after-combustion in the existing boiler. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|