Autor: |
Abel Cabrera Martínez, Juan C. Hernández-Gómez, José M. Sigarreta |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 9, Iss 21, p 2823 (2021) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math9212823 |
Popis: |
Domination theory is a well-established topic in graph theory, as well as one of the most active research areas. Interest in this area is partly explained by its diversity of applications to real-world problems, such as facility location problems, computer and social networks, monitoring communication, coding theory, and algorithm design, among others. In the last two decades, the functions defined on graphs have attracted the attention of several researchers. The Roman-dominating functions and their variants are one of the main attractions. This paper is a contribution to the Roman domination theory in graphs. In particular, we provide some interesting properties and relationships between one of its variants: the quasi-total Roman domination in graphs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|