Interlace polynomials of lollipop and tadpole graphs

Autor: Christina L Eubanks-Turner, Kathryn Cole, Megan Lee
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Electronic Journal of Graph Theory and Applications, Vol 10, Iss 1, Pp 213-226 (2022)
Druh dokumentu: article
ISSN: 2338-2287
DOI: 10.5614/ejgta.2022.10.1.14
Popis: In this paper, we examine interlace polynomials of lollipop andtadpole graphs. The lollipop and tadpole graphs are similar in that they bothinclude a path attached to a graph by a single vertex. In this paper we giveboth explicit and recursive formulas for each graph, which extends the work ofArratia, Bollobas and Sorkin, among others. We also give special values,examine adjacency matrices and behavior of coecients of these polynomials.
Databáze: Directory of Open Access Journals