Autor: |
Julia Stadlmann, Radek Erban |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Royal Society Open Science, Vol 6, Iss 11 (2019) |
Druh dokumentu: |
article |
ISSN: |
2054-5703 |
DOI: |
10.1098/rsos.191423 |
Popis: |
A shift-periodic map is a one-dimensional map from the real line to itself which is periodic up to a linear translation and allowed to have singularities. It is shown that iterative sequences xn+1 = F(xn) generated by such maps display rich dynamical behaviour. The integer parts ⌊xn⌋ give a discrete-time random walk for a suitable initial distribution of x0 and converge in certain limits to Brownian motion or more general Lévy processes. Furthermore, for certain shift-periodic maps with small holes on [0,1], convergence of trajectories to a continuous-time random walk is shown in a limit. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|