Taguchi L25 (54) Approach for Methylene Blue Removal by Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite

Autor: Wafa K. Essa, Suhad A. Yasin, Anwar H. Abdullah, Mohammad R. Thalji, Ibtisam A. Saeed, Mohammed A. Assiri, Kwok Feng Chong, Gomaa A. M. Ali
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Water, Vol 14, Iss 8, p 1242 (2022)
Druh dokumentu: article
ISSN: 2073-4441
DOI: 10.3390/w14081242
Popis: A membrane composed of polyethylene terephthalate nanofiber and multi-walled carbon nanotubes (PET NF-MWCNTs) composite is used to adsorb methylene blue (MB) dye from an aqueous solution. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction techniques are employed to study the surface properties of the adsorbent. Several parameters affecting dye adsorption (pH, MB dye initial concentration, PET NF-MWCNTs dose, and contact time) are optimized for optimal removal efficiency (R, %) by using the Taguchi L25 (54) Orthogonal Array approach. According to the ANOVA results, pH has the highest contributing percentage at 71.01%, suggesting it has the most significant impact on removal efficiency. The adsorbent dose is the second most affected (12.08%), followed by the MB dye initial concentration of 5.91%, and the least affected is the contact time (1.81%). In addition, experimental findings confirm that the Langmuir isotherm is well-fitted, suggesting a monolayer capping of MB dye on the PET-NF-MWCNT surface with a maximum adsorption capacity of 7.047 mg g−1. Also, the kinetic results are well-suited to the pseudo-second-order model. There is a good agreement between the calculated (qe) and experimental values for the pseudo-second-order kinetic model.
Databáze: Directory of Open Access Journals