Autor: |
Phillip H. Papatzacos, M. Nadeem Akram, Olivier Hector, Frédéric Lemarquis, Antonin Moreau, Julien Lumeau, Per Ohlckers |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 9, Iss 5, Pp e15888- (2023) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2023.e15888 |
Popis: |
A micromachined Silicon lid, sealed by CuSn solid liquid interdiffusion bonding is a promising approach for hermetic sealing of microbolometers for use in low-cost thermal cameras. However, since ∼30% of long-wave infrared light is reflected at an uncoated single Si-air interface, anti-reflective treatments are required. Traditional anti-reflective coatings are inapplicable since CuSn solid liquid interdiffusion bonding requires heating to about 270 °C and these multi-layer coatings fail due to differing coefficients of thermal expansion for the different layers and the substrate. For this purpose, an anti-reflective coating that maintains its anti-reflective properties after being heat-cycled to 300 °C has been developed. This coating was developed using a simple 2-layer structure composed of ZnS and YF3 and deposited at 100 °C. The development process that led to the successful coating has also been described in this paper. The final sample shows a 30% average increase in transmission in the 8–12 μm wavelength range as compared to an uncoated wafer. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|