Autor: |
Carme Fàbrega, Núria Gallisà-Suñé, Alice Zuin, Juan Sebastián Ruíz, Bernat Coll-Martínez, Gemma Fabriàs, Ramon Eritja, Bernat Crosas |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Cells, Vol 13, Iss 21, p 1767 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4409 |
DOI: |
10.3390/cells13211767 |
Popis: |
The development of novel tools to tackle viral processes has become a central focus in global health, during the COVID-19 pandemic. The spike protein is currently one of the main SARS-CoV-2 targets, owing to its key roles in infectivity and virion formation. In this context, exploring innovative strategies to block the activity of essential factors of SARS-CoV-2, such as spike proteins, will strengthen the capacity to respond to current and future threats. In the present work, we developed and tested novel bispecific molecules that encompass: (i) oligonucleotide aptamers S901 and S702, which bind to the spike protein through its S1 domain, and (ii) hydrophobic tags, such as adamantane and tert-butyl-carbamate-based ligands. Hydrophobic tags have the capacity to trigger the degradation of targets recruited in the context of a proteolytic chimera by activating quality control pathways. We observed that S901-adamantyl conjugates promote the degradation of the S1 spike domain, stably expressed in human cells by genomic insertion. These results highlight the suitability of aptamers as target-recognition molecules and the robustness of protein quality control pathways triggered by hydrophobic signals, and place aptamer-Hytacs as promising tools for counteracting coronavirus progression in human cells. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|