MVP predicts the pathogenicity of missense variants by deep learning

Autor: Hongjian Qi, Haicang Zhang, Yige Zhao, Chen Chen, John J. Long, Wendy K. Chung, Yongtao Guan, Yufeng Shen
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-020-20847-0
Popis: Accurate prediction of variant pathogenicity is essential to understanding genetic risks in disease. Here, the authors present a deep neural network method for prediction of missense variant pathogenicity, MVP, and demonstrate its utility in prioritizing de novo variants contributing to developmental disorders.
Databáze: Directory of Open Access Journals