Autor: |
Duo Peng, Kun Xie, Mingshuo Liu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Sensors, Vol 24, Iss 13, p 4261 (2024) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s24134261 |
Popis: |
Aiming at the problem that traditional wireless sensor networks produce errors in the positioning and tracking of motorised targets due to noise interference, this paper proposes a motorised target tracking method with a convolutional bi-directional long and short-term memory neural network and extended Kalman filtering, which is trained by using the simulated RSSI value and the actual target value of motorised targets collected from the convolutional bi-directional neural network to the sensor anchor node, so as to obtain a more accurate initial value of the manoeuvre target, and at the same time, the extended Kalman filtering method is used to accurately locate and track the real-time target, so as to obtain the accurate positioning and tracking information of the real-time target. Through experimental simulation, it can be seen that the algorithm proposed in this paper has good tracking effect in both linear manoeuvre target tracking scenarios and non-linear manoeuvre target tracking scenarios. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|