Vanishing diffusion limit and boundary layers for a nonlinear hyperbolic system with damping and diffusion

Autor: Xu Zhao, Wenshu Zhou
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Electronic Research Archive, Vol 31, Iss 10, Pp 6505-6524 (2023)
Druh dokumentu: article
ISSN: 2688-1594
DOI: 10.3934/era.2023329?viewType=HTML
Popis: We consider an initial and boundary value problem for a nonlinear hyperbolic system with damping and diffusion. This system was derived from the Rayleigh–Benard equation. Based on a new observation of the structure of the system, two identities are found; then, the following results are proved by using the energy method. First, the well-posedness of the global large solution is established; then, the limit with a boundary layer as some diffusion coefficient tending to zero is justified. In addition, the $ L^2 $ convergence rate in terms of the diffusion coefficient is obtained together with the estimation of the thickness of the boundary layer.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje