Autor: |
Xu Zhao, Wenshu Zhou |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Electronic Research Archive, Vol 31, Iss 10, Pp 6505-6524 (2023) |
Druh dokumentu: |
article |
ISSN: |
2688-1594 |
DOI: |
10.3934/era.2023329?viewType=HTML |
Popis: |
We consider an initial and boundary value problem for a nonlinear hyperbolic system with damping and diffusion. This system was derived from the Rayleigh–Benard equation. Based on a new observation of the structure of the system, two identities are found; then, the following results are proved by using the energy method. First, the well-posedness of the global large solution is established; then, the limit with a boundary layer as some diffusion coefficient tending to zero is justified. In addition, the $ L^2 $ convergence rate in terms of the diffusion coefficient is obtained together with the estimation of the thickness of the boundary layer. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|