Autor: |
Jingchao Zhang, Yingping Bu, Zhuoyan Li, Ting Yang, Naihui Zhao, Guanghui Wu, Fujing Zhao, Renchun Zhang, Daojun Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 14, Iss 17, p 1445 (2024) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano14171445 |
Popis: |
Oxygen evolution reaction (OER) is a critical half-reaction in electrochemical overall water splitting and metal–air battery fields; however, the exploitation of the high activity of non-noble metal electrocatalysts to promote the intrinsic slow kinetics of OER is a vital and urgent research topic. Herein, Fe-doped Ni3S2 arrays were derived from MOF precursors and directly grown on nickel foam via the traditional solvothermal way. The arrays integrated into nickel foam can be used as self-supported electrodes directly without any adhesive. Due to the synergistic effect of Fe and Ni elements in the Ni3S2 structure, the optimized Fe2.3%-Ni3S2/NF electrode delivers excellent OER activity in an alkaline medium. The optimized electrode only requires a small overpotential of 233 mV to reach the current density of 10 mA cm−2, and the catalytic activity of the electrode can surpass several related electrodes reported in the literature. In addition, the long-term stability of the Fe2.3%-Ni3S2/NF electrode showed no significant attenuation after 12 h of testing at a current density of 50 mA cm−2. The introduction of Fe ions could modulate the electrical conductivity and morphology of the Ni3S2 structure and thus provide a high electrochemically active area, fast reaction sites, and charge transfer rate for OER activity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|